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Summary activity of cerebral neurons, leading to paroxysmal
clinical manifestations of different types (motor, sensi-

Benign infantile familial convulsions is an autosomal
tive, sensorial, and/or psychic). ‘‘Convulsions’’ are de-

dominant disorder characterized by nonfebrile seizures,
fined as epileptic seizures with abnormal motor activ-

with the first attack occurring at age 3–12 mo. It is
ity, whereas the term ‘‘epilepsy’’ should be restricted

one of the rare forms of epilepsy that are inherited as
to the occurrence of recurrent and persisting seizures

monogenic Mendelian traits, thus providing a powerful
in a given individual.

tool for mapping genes involved in epileptic syndromes.
A genetic contribution to the etiology of epilepsy hasParoxysmal choreoathetosis is an involuntary-move-

long been suspected. In addition to the understandingment disorder characterized by attacks that occur spon-
of pathogenetic mechanisms, genetic studies should alsotaneously or are induced by a variety of stimuli. Classi-
help in classification of the different forms of epilepsies.fication is still elusive, and the epileptic nature of this
In most forms of familial epilepsy, no simple Mendelianmovement disorder has long been discussed and remains
mode of inheritance can be seen, with both genic andcontroversial. We have studied four families from north-
environmental factors influencing susceptibility (for awestern France in which benign infantile convulsions
review, see Ottman et al. 1997). This inherent complex-was inherited as an autosomal dominant trait together
ity may explain why, until recently, only few geneticwith variably expressed paroxysmal choreoathetosis.
studies had been performed successfully. However, evi-The human genome was screened with microsatellite
dence now exists for genetic linkage of an increasingmarkers regularly spaced, and strong evidence of linkage
number of susceptibility loci to specific chromosomalfor the disease gene was obtained in the pericentromeric
regions. In benign neonatal familial convulsions, link-region of chromosome 16, with a maximum two-point
ages to chromosome 20q13.2 markers (Leppert et al.LOD score, for D16S3133, of 6.76 at a recombination
1989) and to chromosome 8q24 markers (Lewis et al.fraction of 0. Critical recombinants narrowed the region
1993) have been demonstrated. Region 20q13.2 has alsoof interest to a 10-cM interval around the centromere.
been associated with autosomal dominant nocturnalOur study provides the first genetic evidence for a com-
frontal lobe epilepsy (Phillips et al. 1995), which couldmon basis of convulsive and choreoathetotic disorders
be due to mutations in the gene encoding the a4 subunitand will help in the understanding and classification of
of neuronal nicotinic acetylcholine receptors (Steinlein etparoxysmal neurological syndromes.
al. 1995, 1997), whereas an affected-pedigree-member
analysis was used to map a putative disease gene for

Introduction idiopathic generalized epilepsy to chromosome 8q24
(Zara et al. 1995). Suggestive linkage has also been pro-

Epilepsy is one of the most common neurological disor-
posed for febrile convulsions, at band q13-q21 of chro-

ders, affecting Ç4% of individuals at least once in their
mosome 8 (Wallace et al. 1996). Progressive myoclonus

life. Epileptic seizures involve an abnormal electrical
epilepsy of the Unverricht type has been localized to
chromosome 21q22 (Lehesjoki et al. 1991), and muta-
tions of the cystatin B gene have been identified (Pennac-Received June 2, 1997; accepted for publication July 21, 1997.
chio et al. 1996), whereas a gene for the Lafora typeAddress for correspondence and reprints: Dr. Anthony P. Monaco,
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1991; Weissbecker et al. 1991; Liu et al. 1995), as well etosis. By a search of the genome, strong evidence for
linkage in the four families has been identified in theas against (Whitehouse et al. 1993; Elmslie et al. 1996),

linkage to the short arm of chromosome 6 has been pericentromeric region of human chromosome 16.
shown.

Most forms of epilepsy develop during the first years Subjects and Methods
of life, puberty or in young adulthood. Whereas epilepsy

Clinical Data Collectionis generally considered as a chronic disturbance of brain
function, convulsive disorders of infancy and childhood, Individuals were considered as affected if they had
a relatively large percentage of which are idiopathic, either nonfebrile convulsions at age 3–12 mo, with a
may reflect developmental processes. According to the favorable outcome and no recurrence of similar seizures
Commission on Classification and Terminology of the after drug discontinuation, or paroxysmal choreoathe-
International League Against Epilepsy (1990), three dis- totic movements, or if they had both a history of convul-
tinct entities are classified among the idiopathic forms sions and choreoathetotic movements. Appropriate in-
with onset in the 1st year of life: benign neonatal convul- formed consent was obtained from all subjects. Partial
sions, benign neonatal familial convulsions, and benign epileptic seizures started with a psychomotor arrest and
myoclonic epilepsy in infancy. In addition, nonfebrile a deviation of head and eyes to one side, followed incon-
convulsions, with the first seizure at age 3–12 mo, have stantly by unilateral jerks. In some cases, these seizures
been described (Vigevano et al. 1992; Lee et al. 1993; generalized secondarily. Generalized seizures were of the
Echenne et al. 1994). In each case the disorder was famil- classical tonic-clonic type. None of the interictal electro-
ial, with an autosomal dominant mode of inheritance. encephalograms showed epileptiform abnormalities,
These convulsions have a favorable outcome, and the and computed-tomography scanning or magnetic-reso-
term ‘‘benign infantile familial convulsions’’ has been nance imaging were normal. Choreoathetotic move-
proposed (Vigevano et al. 1992). Genetic linkage to the ments either were of the dystonic type, occurring at rest,
long arm of chromosome 19 has recently been published or could be induced by exertion or anxiety. In some
(Guipponi et al. 1997). patients, attacks could occur as often as 20 times/d. In

We have identified four French families in which be- one case, a videotape recording was made during an
nign infantile convulsion was inherited as an autosomal exertional test. No history of CNS disease or damage
dominant trait together with variably expressed parox- was found. Neurological examinations between attacks
ysmal choreoathetosis. The strong association of both were entirely normal, as was psychomotor development
neurological symptoms in the same families defined a in all affected patients. Calcemia and other biological
new syndrome, familial infantile convulsions and cho- parameters were normal in all individuals of the last
reoathetosis (ICCA), which, although its convulsive generations and were not determined in the other pa-
component is similar to the one initially described by tients.
Vigevano et al. (1992), can be distinguished as a separate

Linkage Analysisentity. Paroxysmal choreoathetosis is a rare, involun-
tary-movement disorder usually segregating in families High-molecular-weight genomic DNA was isolated

from whole blood by use of the Nucleon kit (Scotlab).(Mount and Reback 1940; Richards and Barnett 1968).
It is characterized by attacks occurring spontaneously Highly polymorphic microsatellites markers (Reed et al.

1994; Dib et al. 1996) were analyzed by PCR amplifica-(in the dystonic form) or induced by movements (in the
kinesiogenic form), exertion, being startled, or anxiety. tion of 40 ng of genomic DNA in a 15-ml reaction con-

taining 25 ng of each primer, 1–3 mM MgCl2, 200Although it has long been suspected to be related to
epileptic seizures (Stevens 1966), and despite similarities mM each nucleotide, and 0.2 units of Taq polymerase.

Forward primers were labeled at the 5� terminus with abetween the symptoms, the epileptic nature of at least
some forms of paroxysmal choreoathetosis—namely, fluorescent dye (FAM, HEX, or TET). Fluorescent PCR

products were analyzed on a 373A Sequencer (Appliedthe kinesiogenic ones—remains controversial (Hirata et
al. 1991; Beaumanoir et al. 1996). Significant linkage Biosystem) using the GENESCANTM and GENO-

TYPERTM software. Linkage analysis was performedof paroxysmal dystonic choreoathetosis to chromosome
2q has been shown (Fink et al. 1996; Fouad et al. 1996), under the assumption of an autosomal mode of inheri-

tance with penetrance at .8 and with frequency of thewhereas a more complex form of paroxysmal choreoath-
etosis and episodic ataxia has been linked to chromo- disease allele at .0001, by use of the MLINK modifica-

tion of the LINKAGE computer package (Lathrop andsome 1p (Auburger et al. 1996).
In the present study, linkage of the ICCA syndrome Lalouel 1984). To take into account the later age at

onset of the choreoathetotic trait, the analysis was per-has been excluded from all of the regions where genes
have been mapped for either benign infantile familial formed again by classifying unaffecteds of age õ20 years

as phenotypically unknown. Multipoint analyses wereconvulsions or different forms of paroxysmal choreoath-
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done with LINKMAP (Lathrop et al. 1985), under the penetrance at .9 (LOD score 6.05 at u Å .0). Age at
onset was 4–10 mo for the convulsive trait and wasassumption of either no sex difference or a sex-difference

recombination rate in favor of females (Kozman et al. later for choreoathetosis, since it appeared in patients
age 5–19 years in our families. This is consistent with1995; Dib et al. 1996), with intermarker distances and

order as previously published (Dib et al. 1996). Genetic previous publications, which have reported mean age at
onset of 5–16 years (Kinast et al. 1980). LOD scores andheterogeneity was tested with the HOMOG program

(Ott 1991). u values did not change significantly when the linkage
analysis was conducted under the assumption that unaf-
fected individuals age õ20 years had an unknown phe-Results
notype (table 2).

Multipoint LOD scores were calculated for a subsetIndividuals were considered as affected if they had
either nonfebrile convulsions at age 3–12 mo, with a of markers (fig. 2). A maximum multipoint LOD score

of 7.06 was found at D16S3133, when male and femalefavorable outcome and no recurrence of similar seizures
after drug discontinuation, or paroxysmal choreoathe- recombination rates were assumed to be equal. Since the

pericentromeric region of chromosome 16 has a sixfoldtotic movements, or if they had both a history of convul-
sions and choreoathetotic movements (table 1; see Sub- increase in recombination rates in female compared with

male meioses (Kozman et al. 1995), the multipoint anal-jects and Methods). Before a search of the whole
genome, candidate regions where linkage to different yses were repeated, with incorporation of sex-specific

recombination distances. The maximum LOD score in-types of epilepsies previously had been shown were
tested. Significant negative LOD scores (data not shown) creased slightly, and the region of interest remained

identical (data not shown). Multipoint LOD scores werewere found for each (6p21-p11, 6q23-q25, 8p, 8q13-
q21, 8q24, 10q, 19q, 20q13.2, and 21q22). In particu- also calculated under the assumption of the age-depen-

dent-penetrance model (fig. 2). In this latter case,lar, benign infantile familial convulsion has been linked
to 19q12 in a recent analysis (Guipponi et al. 1997). multipoint LOD scores became higher between

D16S3068 and D16S517, thus confirming the increaseD19S220, D19S250, and D19S425 gave negative LOD
scores (table 2), which unambiguously excluded this of two-point LOD scores for more-pericentromeric

markers, under the age-dependent model.area. In addition, linkage to the candidate regions that
may contain susceptibility loci for paroxysmal choreo- Meiotic-recombination events were revealed by analy-

sis of the haplotypes of affected individuals (fig. 1). Theathetosis was also clearly excluded, with markers
D1S197 and D2S126 (table 2). order of markers was similar to that reported by Dib et

al. (1996), except that D16S401 and D16S3133 wereA whole-genome screen with highly polymorphic
markers regularly spaced across the genome (Reed et al. inverted with respect to each other, because of the re-

combination event, in pedigree C, between D16S4011994) was then performed. After analysis of the data
for 119 markers, preliminary evidence for linkage was and D16S3133, mapping the former more proximal to

D16S420 than to D16S3133. For similar reasons,obtained with two adjacent markers on chromosome
16, D16S420 (two-point LOD score 2.69 at a recombi- D16S3120, although previously mapped between

D16S411 and D16S416, was undoubtedly located be-nation fraction [u] of .05) and D16S411 (two-point
LOD score 2.68 at u Å .1). To explore this region fur- tween D16S517 and D16S261 (see fig. 1). The critical

minimal region containing the susceptibility gene couldther, markers were selected around D16S420 and
D16S411, from the Généthon map (Dib et al. 1996), be reduced to a 10-cM interval. The proximal boundary

is situated between D16S401 and D16S3133, the distaland 10 additional pedigree members were collected (II.5,
III.1–III.7, and IV.1 in pedigree A and III.4 in pedigree one between D16S3093 and D16S517. This locates the

disease locus between marker D16S401, on the shortD; see table 1). A maximum two-point LOD score of
6.76 at u Å .0 was obtained with D16S3133, whereas arm, and marker D16S517, on the long arm, in a 10-

cM region around the centromere of human chromo-additional significant LOD scores were obtained for
seven surrounding markers (table 2). some 16.

Penetrance was not complete, as can be seen in pedi-
gree D (individual II.1; see fig. 1). Linkage analysis was Discussion
performed under the assumption of an autosomal domi-
nant mode of inheritance with penetrance at .8. The We have shown that a gene responsible for a new

familial form of infantile convulsions associated withanalysis was also done with different penetrance values
(.7–.9), without drastic modification of the results (data paroxysmal choreoathetotic movements is located in

a 10-cM region around the centromere of humannot shown). For example, LOD scores for D16S3133
were slightly increased under penetrance at .7 (LOD chromosome 16. Highly significant total LOD scores,

3.10–6.76, for eight adjacent 16p12-q12 markersscore 6.98 at u Å .0) and remained highly significant for
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Table 1

Clinical Information on Affected Subjects

Age Infantile Convulsion: Choreoathetosis:
Pedigree and Individual (Sex) (years) Age at Onset/Type Age at onset/Form

A:
II.2 (male) 62 5 mo/unknown . . .
II.3 (male) 75 5 mo/unknown . . .
III.3 (male) 35 51/2 mo/partial seizure with 7 years/dystonia

secondary generalization
III.4 (male) 31 41/2 mo/unknown . . .
III.8 (female) 42 6 mo/partial seizure . . .
III.10 (female) 32 . . . 7 years/dystonia and movements

induced by anxiety, movements
induced by exertion

III.11 (male) 31 6 mo/partial seizure 7 years/dystonia
III.13 (female) 40 6 mo/unknown . . .
III.17 (female) 38 . . . 8 years/movements induced by anxiety;

movements induced by exertion
IV.4 (male) 8 6 mo/partial seizure . . .
IV.5 (male) 6 . . . 6 years/dystonia and movements

induced by anxiety, movements
induced by exertion

IV.7 (male) 15 7 mo/pratial seizure . . .
IV.10 (female) 9 4 mo/partial seizure with 8 years/dystonia and movements

secondary generalization induced by anxiety, movements
induced by exertion

IV.11 (male) 7 51/2 mo/partial seizure with 7 years/movements induced by anxiety,
secondary generalization movements induced by exertion

B:
II.1 (male) 21 51/2 mo/partial seizure . . .
II.2 (female) 24 . . . 6 years/dystonia
II.3 (female) 26 6 mo/partial seizure with 19 years/dystonia

secondary generalization
III.2 (female) 6 6 mo/partial seizure . . .

C:
I.2 (female) 31 6 mo/partial seizure with 7 years/dystonia

secondary generalization
II.1 (female) 7 6 mo/partial seizure and 5 years/dystonia and movements

generalized seizure induced by anxiety, movements
induced by exertion

II.2 (male) 2 6 mo/partial seizure and . . .
generalized seizure

D:
III.2 (male) 29 5 mo/partial seizure . . .
III.3 (male) 24 8 mo/partial seizure with 9 years/dystonia

secondary generalization
III.4 (male) 27 6 mo/partial seizure . . .
III.5 (female) 30 10 mo/partial seizure . . .
IV.1 (male) 3 6 mo/partial seizure . . .

provide strong evidence of linkage. In a disorder sus- in the north of France. Their common geographic ori-
gin could be helpful in narrowing further the regionpected to exhibit genetic heterogeneity, it is desirable

to demonstrate significant linkage in at least one sin- of interest: if the disease chromosomes in all four
families were descended from a single ancestral muta-gle pedigree. This was the case for our largest pedigree

(A) in which nine markers gave significant two-point tion, then linkage disequilibrium could be success-
fully used to detect historical recombination eventsLOD scores (table 2). Moreover, all families had posi-

tive LOD scores, and homogeneity was not rejected (Jorde 1995).
Linkage analysis has been performed under the as-in a HOMOG test (data not shown). It is noteworthy

that all four families originated from the same region sumption of an autosomal dominant mode of inheri-
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Table 2

Two-Point LOD Scores for Candidate Regions 1p, 2q, and 19q and for 12 Markers at 16p12-q12

LOD SCORE (PENETRANCE .8) AT u Åa

LOCUS AND PEDIGREE(S) 0 .01 .05 .1 .2 .3 .4

D1S197:
A 013.25 05.78 03.48 02.37 01.20 0.55 0.18
All 016.33 07.65 04.57 03.08 01.54 0.71 0.25

D2S126:
A 09.82 04.37 02.29 01.43 0.64 0.26 0.07
All 020.06 010.03 05.44 03.45 01.61 0.71 0.22

D19S220:
A 011.37 05.53 02.41 01.13 0.09 .25 .25
All 014.58 06.37 02.65 01.19 0.08 .23 .21

D19S250:
A 012.79 06.27 03.07 01.71 0.54 0.08 .05
All 019.33 08.63 04.10 02.23 0.64 0.03 .12

D19S425:
A 09.89 04.79 02.30 01.28 0.43 0.09 .02
All 013.01 06.19 03.02 01.73 0.62 0.17 .00

MAXIMUM LOD SCORE (MAXIMUM u)

Penetrance .8a Age-Dependent Penetranceb

D16S420:
A 2.91 (.063) 2.31 (.066)
All 2.66 (.099) 2.07 (.105)

D16S401
A 4.31 (0) 4.43 (0)
All 4.82 (.050) 4.82 (.040)

D16S3133
A 4.12 (0) 4.47 (0)
All 6.76 (0) 6.75 (0)

D16S3068
A 4.34 (0) 4.47 (0)
All 6.53 (0) 6.69 (0)

D16S3131
A 3.64 (0) 4.47 (0)
All 5.83 (0) 6.69 (0)

D16S3100
A .74 (.135) 1.83 (0)
All 1.71 (0) 2.59 (0)

D16S3093
A 2.86 (.031) 4.42 (0)
All 3.63 (.017) 5.24 (0)

D16S3044
A 3.11 (0) 3.68 (0)
All 3.28 (.076) 3.62 (.051)

D16S3120
A 3.17 (0) 3.74 (0)
All 2.70 (.068) 3.82 (0)

D16S261
A 3.23 (0) 4.06 (0)
All 3.10 (.045) 4.60 (0)

D16S411
A 3.64 (0) 4.47 (0)
All 3.56 (.066) 4.14 (.043)

D16S416
A 3.60 (0) 4.43 (0)
All 2.63 (.147) 2.73 (.122)

a Linkage analysis was performed under the assumption of an autosomal dominant mode of inheritance
with frequency of the disease allele at .0001, and penetrance at .8, by use of the MLINK modification of
the LINKAGE computer package.

b Linkage analysis was performed under the assumption of an autosomal dominant mode of inheritance
with frequency of the disease allele at .0001, by classifying unaffecteds of age õ20 years as phenotypically
unknown, to take into account the later age at onset of the choreoathetotic trait.

/ 9a38$$oc07 09-15-97 13:23:27 ajhga UC-AJHG



894
A

m
.

J.
H

um
.

G
enet.

61:889
–

898,
1997

Figure 1 Pedigrees and haplotype analysis of the families with autosomal dominant infantile convulsions and paroxysmal choreoathetosis. Marker genotypes are shown from the p
terminus to the q terminus and cover Ç30 cM in the region 16p12-16q12.
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g subunit of a sodium channel (Voilley et al. 1995), a
sodium/glucose co-transporter (Wells et al. 1993), and
an ATPase, calcium-transporting protein (Callen et al.
1991), are encoded by genes situated in the region of
interest. The STM gene, also situated at 16p11-p12
(Aksoy et al. 1994), encodes the monoamine-preferring
form of sulfotransferase and is responsible for the sul-
fate conjugation of monoamine neurotransmitters.
Mutations in the Batten disease gene (The International
Batten Disease Consortium 1995), located at 16p12,
have been associated with an early loss of vision, fol-
lowed by mental deterioration and epileptic seizures.
In parallel with the genetic and physical characteriza-
tion of the critical region at 16p12-q12, direct muta-
tional analysis of candidate genes will be performed in
order to exclude them—or, conversely, to identify one
of them—as the ICCA gene. Mutations in the putative

Figure 2 Multipoint LOD scores. Multipoint analyses were ICCA gene probably account for a small proportion
done with LINKMAP, with intermarker distances and order as pre- of familial epilepsies of childhood. In most forms of
viously published (Dib et al. 1996). epilepsy, both genetic and environmental factors may

influence susceptibility (Ottman et al. 1997), whereas
involuntary choreoathetotic movements clearly display
clinical as well as genetic heterogeneity. However, eventance with penetrance at .8. As can be seen in figure 1,

two unaffected members in pedigree A (IV.3 and IV.12, if ICCA mutations were rare, identification of the gene
product and function should provide information onages 11 and 4 years, respectively) had the full disease

haplotype, as did one member of pedigree B (III.1, age the basic pathogenetic mechanisms and relationships
of convulsive and movement disorders.5 years) as well as the obvious one in pedigree D (II.1,

age 52 years). Also, at least one of the three unaffecteds To our knowledge, this is the first time that epileptic
seizures and paroxysmal choreoathetosis have been(IV.1, IV.2, and IV.8, ages 3, 14, and 14, respectively)

in pedigree A who had partial disease haplotypes did studied genetically as a unique syndrome. This was ren-
dered possible by the association, in all four families,inherit the disease gene, since these haplotypes over-

lapped. This is consistent with incomplete penetrance, of both clinical manifestations. Genetic studies have
already been performed on both symptoms separately:and the derived penetrance (number of true affected

patients/number of disease haplotypes) is P Å .78, the so-called benign infantile familial convulsions,
whose clinical manifestations are the same as those seenwhich is in the same range as that (.8) assumed prior

to the analysis. Most recombination events occurred in in our patients, has been linked to chromosome 19,
band q12 (Guipponi et al. 1997), whereas susceptibilityfemales (20 in females vs. 5 in males), which is consis-

tent with the sixfold excess in recombination rates, in loci for two forms of paroxysmal choreoathetosis have
been mapped to chromosomes 1p (Auburger et al.favor of females, that has been described for this region

(Kozman et al. 1995). In two cases (III.7 and IV.7 in 1996) and 2q (Fink et al. 1996; Fouad et al. 1996),
respectively. We have definitely excluded linkage to anypedigree A; see fig. 1), a double-recombination event

was seen. This can be easily explained by the large of these regions, which emphasizes the complexity, het-
erogeneity, and difficulties in classification of these dis-distance separating these female crossovers (minimal

female distances of 47.8 and 25.7 cM, respectively, eases.
In all four families, both infantile convulsions andaccording to Dib et al. [1996]).

Haplotype analysis narrowed the region of interest choreoathetotic movements could be found, and the two
clinical manifestations were even present together into 10 cM, between D16S401 and D16S517. Among all

the genes and expressed sequence tags that have been eight patients. In four patients (see table 1), the choreo-
athetotic movements were present without any historylocalized to the critical area (Callen et al. 1995; Schuler

et al. 1996), some are good candidates for being in- of convulsion. It is important to note that one of these
four patients (III.17 in pedigree A) had two affected sibsvolved in convulsive and choreoathetotic disorders.

The b-2 type of protein kinase C is situated around with both choreoathetotic movements and convulsions,
which emphasizes the variable expressivity of this syn-D16S420 and D16S401 (Callen et al. 1995). Ionic

channels and transporters could also play a role in the drome. In fact, even when the convulsive disorder alone
is considered as the affected trait, region 19q was stillpathogenesis of paroxysmal neurological diseases: the
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excluded without ambiguity, and LOD scores at 16p12- References
q12, although lower (maximum two-point LOD score

Aksoy IA, Callen DF, Apostolou S, Her C, Weinshilboum RM4.91 at u Å .0, for D16S3133, D16S3068 and
(1994) Thermolabile phenol sulfotransferase gene (STM):D16S3131, with penetrance .7), remained significant for
localization to human chromosome 16p11.2. Genomics 23:

six markers. On the basis of this latter hypothesis, iso- 275–277
lated choreoathetotic movements occurred only in indi- Auburger G, Ratzlaff T, Lunkes A, Nelles HW, Leube B, Bin-
viduals sharing at-risk haplotypes. Taken together, these kofski F, Kugel H, et al (1996) A gene for autosomal domi-
arguments make it very unlikely that the two symp- nant paroxysmal choreoathetosis/spasticity (CSE) maps to
toms—that is, convulsive seizures and choreoathetotic the vicinity of a potassium channel gene cluster on chromo-

some 1p, probably within 2 cM between D1S443 andmovements—are unrelated in these families. Moreover,
D1S197. Genomics 31:90–94although their relative prevalence is not known with

Beaumanoir A, Mira L, Van Lierde A (1996) Epilepsy or kines-precision, both symptoms are rare (Kinast et al. 1980;
igenic choreoathetosis? Brain Dev 18:139–141Vigevano et al. 1992; Guipponi et al. 1997), thus rein-

Callen DF, Baker E, Lane S, Nancarrow J, Thompson A,forcing the probability of their nonrandom association
Whitmore SA, MacLennan DH, et al (1991) Regional map-in the families studied. This association is not surprising
ping of the Batten disease locus (CLN3) to human chromo-

if one considers (a) that paroxysmal choreoathetosis and some 16p12. Am J Hum Genet 49:1372–1377
epileptic seizures have already been described in the Callen DF, Lane SA, Kozman H, Kremmidiotis G, Whitmore
same patients (Pryles et al. 1952; Fukuyama and Okada A, Lowenstein M, Doggett NA, et al (1995) Integration of
1968), or even in three patients of the same family (Hud- transcript and genetic maps of chromosome 16 at near-1-
gins and Corbin 1966), and (b) the possible epileptic Mb resolution: demonstration of a ‘‘hot spot’’ for recombi-

nation at 16p12. Genomics 29:503–511nature of paroxysmal choreoathetosis. The pathophysi-
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